|  | 

Конспект урока на тему “Применение производной к исследованию функции”

МОУ Греково-Степановская СОШ

Чертковского района Ростовской области

Учитель математики и информатики

Киселева Лариса Анатольевна

Урок алгебры в 11 классе

Урок – смотр знаний

Тема урока

Применение производной к исследованию функции

Цели урока:

Дидактическая:

Обеспечить проверку теоретических знаний и умений по теме “Применение производной к исследованию функции”.

Развивающая:

Развитие умений применять знания в конкретной ситуации; развитие логического мышления; умений сравнивать, обобщать, правильно излагать мысли; развитие самостоятельной деятельности учащихся.

Воспитательная:

Воспитание интереса и любви к предмету через содержание учебного материала, умения работать в коллективе, взаимопомощи, культуры общения; воспитание таких качеств характера, как настойчивость в достижении цели; умение не растеряться в проблемных ситуациях.

План проведения урока:

Организационный момент.

Актуализация знаний учащихся.

Работа в группах по карточкам.

Историческая справка.

Домашнее задание.

Итог урока.

Ход урока

Организационный момент.

Приветствие.

Сообщение цели урока.

Объявление плана урока.

Актуализация знаний учащихся.

Учащиеся поднимают руку, если согласны с утверждением, и не поднимают – если не согласны.

В точке возрастания функции ее производная больше нуля. (Верно).

Если производная функции в некоторой точке равна нулю, то в этой точке имеется экстремум! (Неверно).

Производная произведения равна произведению производных. (Неверно).

Наибольшее и наименьшее значения функции на некотором отрезке наблюдаются или в стационарных точках, или на концах отрезка. (Верно).

Любая точка экстремума является критической точкой. (Верно).

На экране по очереди появляются слайды с чертежами и заданиями к ним. Учащиеся фиксируют в тетрадях ответ. Затем на экран выводятся правильные ответы.

Самопроверка.

1 слайд

1 задание: Функция y = f(x) определена на промежутке (- 6; 6). На рисунке изображен график ее производной. Найдите точки, в которых производная функции равна нулю.




Конспект урока на тему “Применение производной к исследованию функции”
Обратная связь: Email